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Abstract: As shown during the SARS-CoV-2 pandemic, phylogenetic and phylodynamic methods are essential9

tools to study the spread and evolution of pathogens. One of the central assumptions of these methods is that10

the shared history of pathogens isolated from different hosts can be described by a branching phylogenetic11

tree. Recombination breaks this assumption. This makes it problematic to apply phylogenetic methods to12

study recombining pathogens, including, for example, coronaviruses. Here, we introduce a Markov chain Monte13

Carlo approach that allows inference of recombination networks from genetic sequence data under a template14

switching model of recombination. Using this method, we first show that recombination is extremely common in15

the evolutionary history of SARS-like coronaviruses. We then show how recombination rates across the genome16

of the human seasonal coronaviruses 229E, OC43 and NL63 vary with rates of adaptation. This suggests that17

recombination could be beneficial to fitness of human seasonal coronaviruses. Additionally, this work sets the18

stage for Bayesian phylogenetic tracking of the spread and evolution of SARS-CoV-2 in the future, even as19

recombinant viruses become prevalent.20

Main21

Since its emergence, genetic sequence data has been applied to study the evolution and spread of SARS-CoV-22

2. Genetic sequences have, for example, been used to determine the origins SARS-CoV-2 (Andersen et al.,23

2020), when SARS-CoV-2 was introduced into the US (Bedford et al., 2020) as well as to investigate whether24

genetic variants differ in viral fitness (Volz et al., 2021). These analyses often rely on phylogenetic and phylo-25

dynamic approaches, at the heart of which are phylogenetic trees. Such trees denote how viruses isolated from26

different individuals are related and contain information about the transmission dynamics connecting these27

infections (Grenfell et al., 2004).28

Alongside mutations introduced by errors during replication, different recombination processes contribute29

to genetic diversity in RNA viruses (reviewed by Simon-Loriere and Holmes, 2011). Reassortment in segmented30

viruses (generally negative-sense RNA viruses), such as influenza or rotaviruses, can produce offspring that carry31

segments from different parent lineages (McDonald et al., 2016). In other RNA viruses (generally positive-sense32

RNA viruses), such as flaviviruses and coronaviruses, homologous recombination can combine different parts33

of a genome from different parent lineages in absence of physically separate segments on the genome of those34

viruses (Su et al., 2016). The main mechanism of this process is thought to be via template switching (Lai,35

1992), where the template for replication is switched during the replication process. Recombination breakpoints36

in experiments appear to be largely random, with selection selecting recombination breakpoints in some areas37

of the genome (Banner and Mc Lai, 1991). Recent work shows that recombination breakpoints occur more38

frequently in the spike region of betacoronaviruses, such as SARS-CoV-2 (Bobay et al., 2020).39

Recombination poses a unique challenge phylogenetic methods, as it violates the very central assumption40

that the evolutionary history of individuals can be denoted by branching phylogenetic trees. Recombination41

breaks this assumption and requires representation of the shared ancestry of a set of sequences as a network.42
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Not accounting for this can lead to biased phylogenetic and phylodynamic inferences (Posada and Crandall,43

2002; Müller et al., 2020).44

An analytic description of recombination is provided by the coalescent with recombination, which models45

a backwards in time process where lineages can coalescent and recombine (Hudson, 1983) Backwards in time,46

recombination of a single lineage results in two lineages, with one parent lineage carrying the genetic material47

of one side of a random recombination breakpoint and the other parent lineage carrying the genetic material of48

the side of this breakpoint. This equates to the backwards in time equivalent of template switching where there49

is one recombination breakpoint per recombination event.50

Currently, some Bayesian phylogenetic approaches exist that infer recombination networks, or ancestral51

recombination graphs (ARG), but are either approximate or do not directly allow for efficient model-based52

inference. Some approaches consider tree-based networks (Didelot et al., 2010; Vaughan et al., 2017), where the53

networks consist of a base tree where recombination edges always attach to edges on the base tree. Alternative54

approaches rely on approximations to the coalescent with recombination (Rasmussen et al., 2014; McVean and55

Cardin, 2005), consider a different model of recombination (Müller et al., 2020), or seek to infer recombination56

networks absent an explicit recombination model (Bloomquist and Suchard, 2010). There is, however, a gap for57

Bayesian inference of recombination networks under the coalescent with recombination that can be applied to58

study pathogens, such as coronaviruses.59

In order to fill this gap, we here develop a Markov chain Monte Carlo (MCMC) approach to efficiently60

infer recombination networks under the coalescent with recombination for sequences sampled over time. This61

framework allows joint estimation of recombination networks, effective population sizes, recombination rates62

and parameters describing mutations over time from genetic sequence data sampled through time. We explicitly63

do not make additional approximation to characterize the recombination process, other than those of the64

coalescent with recombination (Hudson, 1983), such as, for example, the approximation of tree based networks.65

We implemented this approach as an open source software package for BEAST2 (Bouckaert et al., 2018). This66

allows incorporation of the various evolutionary models already implemented in BEAST2.67

We first apply the coalescent with recombination to study the evolutionary history of SARS-like coron-68

aviruses. Doing so, we show that the evolutionary history of SARS-like coronaviruses is extremely complex and69

has little resemblance to tree-like evolution. Additionally, we show that recombination only occurred between70

closely related SARS-like viruses in the recent history of SARS-CoV-2. Next, we reconstruct the evolutionary71

histories of MERS-CoV and three seasonal human coronaviruses to show that recombination also frequently72

occurs in human coronaviruses at rates that are comparable to reassortment rates in influenza viruses. Next, we73

show that recombination breakpoints in human coronaviruses vary with rates of adaptation across the genomes,74

suggesting recombination events being positively or negatively selected based on where breakpoints occur.75

Rampant recombination in SARS-like coronaviruses76

Recombination has been implicated at the beginning of the SARS-CoV-1 outbreak (Hon et al., 2008) and has77

been suggested as the origin of the receptor binding domain in SARS-CoV-2 (Li et al., 2020). While this strongly78

suggests non-tree-like evolution, the evolutionary history of SARS-like viruses has, out of necessity, mainly been79

denoted using phylogenetic trees.80

We here reconstruct the recombination history of SARS-like viruses, which includes SARS-CoV-1 and SARS-81

CoV-2 as well as related bat (Ge et al., 2013, 2016; Zhou et al., 2020) and pangolin (Lam et al., 2020) coron-82

aviruses. To do so, we infer the recombination network of SARS-like viruses under the coalescent with recom-83

bination. We assumed that the rates of recombination and effective population sizes were constant over time84

and that the genomes evolved under a GTR+Γ4 model. Similar to the estimate in Boni et al. (2020), we used85

a fixed evolutionary rate of 5 × 10−4 per nucleotide and year. We fixed the evolutionary rate, since the time86

interval of sampling between individual isolates in relatively short compared to the time scale of the evolutionary87

history of SARS-like viruses. This means that the sampling times themselves therefore offer little insight into88

the evolutionary rates and in absence of other calibration points, there is therefore little information about the89
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evolutionary rate in this dataset. This in turn, means that if the evolutionary rate we used here is inaccurate90

then the timings of common ancestors will also be inaccurate. Therefore, exact timings and calendar dates in91

this analyses should be taken as guide posts rather than formal estimates.92

As shown in Figure 1A, the evolutionary history of SARS-like viruses is characterized by a frequent recombi-93

nation events. Consequently, characterizing evolutionary history of SARS-like viruses by a single genome-wide94

phylogeny is bound to be inaccurate and potentially misleading. We infer the recombination rate in SARS-like95

viruses to be approximately 2× 10−6, which is about 200 times lower than the evolutionary rate. These recom-96

bination events were not evenly distributed across the genome and instead were largely concentrated in areas97

outside those coding for ORF1ab (Fig. S1). Additionally, we find some evidence for elevated rates of recom-98

bination on spike subunit 1 compared to subunit 2 (Fig. S1) If we assume that during the replication of the99

genome of coronaviruses, template shifts occur randomly on the genome (Banner and Mc Lai, 1991), differences100

in observed recombination rates could be explained by selection favoring recombination events 3’ to ORF1ab.101

We next investigate when different viruses last shared a common ancestor (MRCA) along the genome (see102

Fig. 1B and Fig. S2). RmYN02 (Zhou et al., 2020) shares the MRCA with SARS-CoV-2 on the part of the103

genome that codes for ORF1ab(Fig. 1B We additionally find strong evidence for one or more recombination104

events in the ancestry of RmYN02 at the beginning of the spike protein (Fig. 1B). This recent recombination105

event is unlikely to have occurred with a recent ancestor of any of the coronaviruses included in this dataset, as106

the common ancestor of RmYN02 with any other virus in the dataset is approximately the same (Fig. S3A). In107

other words, large parts of the spike protein of RmYN02 are as related to SARS-CoV-2 as SARS-CoV-2 is to108

SARS-CoV-1. The common ancestor timings of P2S across the genome are equal between RaTG13 and SARS-109

CoV-2 (Fig. S3B). RaTG13 on the other hand is more closely related to SARS-CoV-2 than P2S (Fig. S3B)110

across the entire genome. This suggests that no recombination events occurred in the ancestry of SARS-CoV-1,111

RaTG13 and P2S with distantly related viruses.112

When looking at when different viruses last shared a common ancestor anywhere on the genome, or in other113

words, when looking at when the ancestral lineages of two viruses last crossed paths, we find that RmYN02 has114

the most recent MRCA with SARS-CoV-2 (Fig. S3C). The median estimate of the most recent MRCA with115

RmYN02 is 1986 (95% CI: 1973–2005), with RaTG13 to be 1975 (95% CI: 1988–1964), with P2S to be 1949116

(95% CI: 1907–1973) and with SARS-CoV-1 to be 1834 (95% CI: 1707–1935). These estimates are contingent117

on a fixed evolutionary rate of 5× 10−4 per nucleotide and year.118

Rates of recombination vary with rates of adaptation in human seasonal coron-119

aviruses120

We next investigate recombination patterns in MERS-CoV with over 2500 confirmed cases in humans as well121

as human seasonal coronaviruses 229E, OC43 and NL63 with widespread seasonal circulation in humans.122

As for the SARS-like viruses, we jointly infer recombination networks, rates of recombination and population123

sizes for these viruses. We assumed that the genomes evolved under a GTR+Γ4 model and, in contrast to the124

analysis of SARS-like viruses, inferred the evolutionary rates. We observe frequent recombination in the history125

of all 4 viruses, wherein genetic ancentry is described by network rather than a strictly branching phylogeny126

(Fig. 2A-D).127

The human seasonal coronaviruses all have recombination rates around 1× 10−5 per site and year (Fig. S5).128

This is around 10 to 20 times lower than the evolutionary rate (Fig. S6). In contrast to the recombination rates,129

the evolutionary rates vary greatly across the human seasonal coronaviruses, with rates between a median of130

1.3× 10−4 (CI 1.1− 1.5× 10−4) for NL63 and median rate of 2.5× 10−4 (CI 2.2− 2.7× 10−4) and 2.1× 10−4
131

(CI 1.9− 2.3× 10−4) for 229E and OC43 (Fig. S6). These evolutionary rates are substantially lower than those132

estimated for SARS-CoV-2 (1.1×10−3 substitutions per site and year (Duchene et al., 2020)), which are more in133

line with our estimates for the evolutionary rates of MERS with a median rate of 6.9×10−4 (CI 6.0−7.9×10−4).134

Evolutionary rate estimates can be time dependent, with datasets spanning more time estimating lower rates of135

evolution that those spanning less time (Duchêne et al., 2014). In turn, this means that the evolutionary rates136
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Figure 1: Evolutionary history of SARS-like viruses. A Maximum clade credibility network of SARS-like
viruses. Blue dots denote samples and green dots recombination events. B Common ancestor times of Wuhan-
Hu1 (SARS-CoV-2) with different SARS-like viruses on different positions of the genome. The y-axis denote
common ancestor times in log scale. C Most recent time anywhere on the genome that Wuhan-Hu1 shared a
common ancestor with different SARS-like viruses

estimates for SARS-CoV-2 will likely be lower the more time passes. It is unclear though, whether it is going137

to approximate the evolutionary rates of other seasonal coronaviruses.138

On a per-lineage basis this estimated recombination rate translates into around 0.1–0.3 recombination events139

per lineage and year (Fig. 2E). Recombination events defined here are a product of co-infection, recombination140

and selection of recombinant viruses. Interestingly, the rate at which recombination events occur is highly similar141

to the rate at which reassortment events occur in human influenza viruses (Fig. 2D, and Müller et al. (2020)). If142

we assume similar selection pressures for recombinant coronaviruses compared to reassortant influenza viruses,143

this would indicate similar co-infection rates in influenza and coronaviruses. The incidence of coronaviruses144

in patients with respiratory illness cases over 12 seasons in western Scotland have been found to be lower145

(7%− 17%) than for influenza viruses (13%–34% but to be of the same order of magnitude (Nickbakhsh et al.,146

2020). Considering that seasonal coronaviruses typically are less symptomatic than influenza viruses, it is not147

unreasonable to assume that annual incidence and therefore likely the annual co-infection rates are comparable148

between influenza and coronaviruses.149

Compared to human seasonal coronaviruses, recombination occurs around 3 times more often for MERS-150

CoV (Fig. 2E). MERS-CoV mainly circulates in camels and occasionally spills over into humans (Dudas et al.,151

2018). Infections of camels with MERS-CoV are highly prevalent, with close to 100% of adult camels showing152

antibodies against MERS-CoV (Reusken et al., 2014). Higher incidence and thus higher rates of co-infection153

could therefore account for higher rates of recombination in MERS-CoV compared to the human seasonal154
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Figure 2: Recombination networks and rates for coronaviruses MERS, 229E, OC43 and NL63.
Recombination networks for MERS (A) and seasonal human coronaviruses 229E (B), OC43 (C) and NL63
(D). E Recombination rates in per lineage and year for the different coronaviruses compared to reassortment
rates in seasonal human influenza A/H3N2 and influenza B viruses as estimated in Müller et al. (2020). For
OC43 and NL63, the parts of the recombination networks that stretch beyond 1950 are not shown to increase
readability of more recent parts of the networks.

The evolutionary purpose of recombination in RNA viruses, as well as whether recombination provides156

a fitness benefit is unclear (Simon-Loriere and Holmes, 2011). To investigate whether recombination benefits157

fitness in human coronaviruses, we next tested whether rates of recombination differed on different parts of the158

genome. To do so, we allowed everything 5’ of the spike protein, i.e. mostly ORF1ab, the spike protein itself and159

everything 3’ of the spike protein to have a different relative rate of recombination. We computed recombination160

rate ratios on each section as the recombination rate on that section divided by the mean rate on the other two161

sections. We infer that recombination rates are elevated in the spike protein of all human seasonal coronaviruses162

considered here (Fig. 3). This is consistent with other work estimating higher rates of recombination on the163

spike protein of betacoronaviruses (Bobay et al., 2020).164

We next tested whether recombination rates are elevated on parts of the genome that also show strong signs165

of adaptation. To do so, we computed the rates of adaption on different parts of the genomes of the seasonal166

human coronaviruses using the approach described in (Bhatt et al., 2011) and Kistler and Bedford (2021). This167

approach does not explicitly consider trees to compute the rates of adaptation on different parts of the genomes168

and is not affected by recombination (Kistler and Bedford, 2021). We computed adaptation rate ratios on each169

section as the adaptation rate on that section divided by the mean rate on the other two sections. We find that170

sections of the genome with relatively higher rates of adaptation correspond to sections of the genome with171

relatively higher rates of recombination (Fig. 3). In particular, recombination and adaptation are elevated on172

the section of the genome that codes for the spike protein and lower elsewhere.173
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Figure 3: Comparison of recombination rates with rates of adaptation on different parts of the
genomes of seasonal human coronaviruses 229E, OC43 and NL63. Here, we show the relations of
estimated relative recombination rate (x-axis) and relative adaptation rate (y-axis). The relative rates are
shown for three different seasonal human coronaviruses 229E, OC43 and NL63. These estimates are shown for
different parts of the genome, indicated by the different colors. They results from two different types of analysis,
one using the spike protein only (subunit 1 over subunit 2) and one using the full genome. The rate ratios denote
the rate on a part of the genome divided by the average rate on the two other parts of the genome.

We next investigated whether these trends hold when looking at the spike protein only. The spike protein is174

made up of two subunits. Subunit 1 (S1) binds to the host cell receptor, while subunit 2 (S2) facilitates fusion175

of the viral and cellular membrane (Walls et al., 2020). S1 contains the receptor binding domain and rates of176

adaptation have been shown to be high in S1 for 229E and OC43 (Kistler and Bedford, 2021). While the rates of177

adaptation are relatively low overall for NL63, there is still some evidence that they are elevated in S1 compared178

to S2 (Kistler and Bedford, 2021).179

To test whether recombination rates vary with rates of adaptation on the subunits as well, we inferred the180

recombination rates from the spike protein only, allowing for different rates of recombination on S1 from the rest181

of the spike protein. We find that the rates of recombination are elevated on S1 for 229E and OC43 compared182

to the rest of the spike protein (Fig. 3). This is consistent with strong absolute rates of adaptation on S1 on183

these two viruses. For NL63, we find weak evidence for the rate on S2 to be slightly higher than on S1 (Fig. 3),184

even though the rates of adaptation are inferred to be higher on S1. The absolute rate of adaptation on the185

spike protein of NL63 are, however, substantially lower than for 229E or OC43. Additionally, the uncertainty186

around the estimates on adaption rate ratios between the two subunits for NL63 are rather large and include187

no difference at all. Overall, these results suggest that recombination events are either positively or negatively188

selected for. Elevated rates of recombination in areas where adaptation is stronger have been described for other189

organisms (reviewed here (Nachman, 2002)).190

Recombination is generally selected for, if breaking up the linkage disequilibrium is beneficial (Barton, 1995).191

Recombination can help purge deleterious mutations from the genome, such as proposed by the mutational-192

deterministic hypothesis (Feldman et al., 1980). Recombination can also increase the rate at which fit combi-193

nation of mutations occur, such as stated by the Robertson-Hill effect (Hill and Robertson, 1966).194

To further investigate this, we next computed the rates of recombination on fitter and less fit parts of the195

recombination networks of 229E, OC43 and NL63. To do so, we first classify each edge of the inferred posterior196

distribution of the recombination networks into fit and unfit based on how long a lineage survives into the future.197

Fit edges are those that have descendants at least one, two, five or ten years into the future and unfit edges198

those that do not. We then computed the rates of recombination on both types of edges for the entire posterior199

distribution of networks. We overall do not find that fit edges show relatively higher rates of recombination (see200
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figure S7). The simplest explanation is that we do not have enough data points to measure recombination rates201

on unfit edges, meaning to measure recombination rates on part of the recombination network where selection202

had too little time to shape which lineages survive and which go extinct. An alternative explanation to why203

we see elevated rate or recombination in the spike protein, but do not observe a population level fitness benefit204

could be that most (outside of spike) recombinants could be detrimental to fitness with few (on spike) having205

little fitness effect at all.206

Conclusion207

Though not yet highly prevalent, evidence for recombination in SARS-CoV-2 has started to appear (VanIns-208

berghe et al., 2020). As such, it is crucial to know the extent to which recombination is expected to shape209

SARS-CoV-2 in the coming years, and to have methods to identify recombination and to perform phylogenetic210

reconstruction in the presence of recombination. The results shown here indicate that some recombination are211

either positively or negatively selected for. Estimating the deleterious load of viruses before and after recombi-212

nation using ancestral sequence reconstruction (Yang et al., 1995) could help shed light on which sequences are213

favored during recombination. Additionally, having additional sequences to reconstruct recombination patterns214

the seasonal coronaviruses should clarify the role recombination plays in the long term evolution of these viruses.215

The likely rise of future SARS-CoV-2 recombinants will further necessitate methods that allow to perform216

phylogenetic and phylodynamic inferences in the presence of recombination (Neches et al., 2020). In absence217

of that, recombination has to be either ignored, leading to biased phylogenetic and phylodynamic reconstruc-218

tion (Posada and Crandall, 2002). Alternatively, non-recombinant parts of the genome have to be used for219

analyses, reducing the precision of these methods. Our approach addresses this gap by providing a Bayesian220

framework to infer recombination networks. To facilitate easy adaptation, we implemented the method such that221

setting up analyses follows the same workflow as regular BEAST2 (Bouckaert et al., 2018) analyses. Extending222

the current suite of population dynamic models, such as birth-death models (Stadler, 2009) or models that223

account for population structure (Hudson et al., 1990; Lemey et al., 2009), will further increase the applicability224

of recombination models to study the spread of pathogens.225

Materials and Methods226

Coalescent with recombination227

The coalescent with recombination models a backwards in time coalescent and recombination process (Hudson,228

1983). In this process, three different events are possible: sampling, coalescence and recombination. Sampling229

events happen at predefined points in time. Recombination events happen at a rate proportional to the number230

of coexisting lineages at any point in time. Recombination events split the path of a lineage in two, with231

everything on one side of a recombination breakpoint going going in one ancestry direction and everything on232

the other side of a breakpoint going in the other direction. As shown in Figure 4, the two parent lineages after233

a recombination event each “carry” a subset of the genome. In reality the viruses corresponding to those two234

lineages still “carry” the full genome, but only a part of it will have sampled descendants. In other words,235

only a part of the genome carried by a lineage at any time may impact the genome of a future lineage that236

is sampled. The probability of actually observing a recombination event on lineage l is proportional to how237

much genetic material that lineage carries. This can be computed as the difference between the last and first238

nucleotide position that is carried by l, which we denote as L(l). Coalescent events happen between co-existing239

lineages at a rate proportional to the number of pairs of coexisting lineages at any point in time and inversely240

proportional to the effective population size. The parent lineage at each coalescent event will “carry” genetic241

material corresponding to the union of genetic material of the two child lineages.242
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Figure 4: Example recombination network. Events that can occur on a recombination network as considered
here. We consider events to occur from present backwards in time to the past (as is the norm when looking at
coalescent processes. Lineages can be added upon sampling events, which occur at predefined points in time
and are conditioned on. Recombination events split the path of a lineage in two, with everything on one side of
a recombination breakpoint going in one and everything on the other side of a breakpoint going in the other
direction.

Posterior probability243

In order to perform joint Bayesian inference of recombination networks together with the parameters of the
associated models, we use a MCMC algorithm to characterize the joint posterior density. The posterior density
is denoted as:

P (N,µ, θ, ρ|D) =
P (D|N,µ)P (N |θ, ρ)P (µ, θ, ρ)

P (D)
,

where N denotes the recombination network, µ the evolutionary model, θ the effective population size and ρ244

the recombination rate. The multiple sequence alignment, that is the data, is denoted D. P (D|N,µ) denotes245

the network likelihood, P (N |θ, ρ), the network prior and P (µ, θ, ρ) the parameter priors. As is usually done in246

Bayesian phylogenetics, we assume that P (µ, θ, ρ) = P (µ)P (θ)P (ρ).247
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Network Likelihood248

While the evolutionary history of the entire genome is a network, the evolutionary history of each individual
position in the genome can be described as a tree. We can therefore denote the likelihood of observing a sequence
alignment (the data denoted D) given a network N and evolutionary model µ as:

P (D|N,µ) =

sequence length∏
i=1

P (Di|Ti, µ),

with Di denoting the nucleotides at position i in the sequence alignment and Ti denoting the tree at position i.249

The likelihood at each individual position in the alignment can then be computed using the standard pruning250

algorithm (Felsenstein, 1981). We implemented the network likelihood calculation P (Di|Ti, µ) such that it allows251

making use of all the standard site models in BEAST2. Currently, we only consider strict clock models and do252

not allow for rate variations across different branches of the network. This is because the number of edges in253

the network changes over the course of the MCMC, making relaxed clock models complex to implement. We254

implemented the network likelihood such that it can make use of caching of intermediate results and use unique255

patterns in the multiple sequence alignment, similar to what is done for tree likelihood computations.256

Network Prior257

The network prior is denoted by P (N |θ, ρ), which is the probability of observing a network and the embedding258

of segment trees under the coalescent with recombination model, with effective population size θ and per-lineage259

recombination rate ρ. It essentially plays the same role that tree prior plays in standard phylodynamic analyses.260

We can calculate P (N |θ, ρ) by expressing it as the product of exponential waiting times between events (i.e.,
recombination, coalescent, and sampling events):

P (N |θ, ρ) =

#events∏
i=1

P (eventi|Li, θ, ρ)× P (intervali|Li, θ, ρ),

where we define ti to be the time of the i-th event and Li to be the set of lineages extant immediately prior to261

this event. (That is, Li = Lt for t ∈ [ti − 1, ti).)262

Given the coalescent process is a constant size coalescent and given the i-th event is a coalescent event, the
event contribution is denoted as:

P (eventi|Li, θ, ρ) =
1

θ
.

If the i-th event is a recombination event and assuming constant rates of recombination over time, the event
contribution is denoted as:

P (eventi|Li, θ, ρ) = ρ ∗ L(l).

The interval contribution denotes the probability of not observing any event in a given interval. It can be
computed as the product of not observing any coalescent, nor any recombination events in interval i. We can
therefore write:

P (intervali|Li, θ, ρ) = exp[−(λc + λr)(ti − ti−1)],

where λc denotes the rate of coalescence and can be expressed as:

λc =

(
|Li|
2

)
1

θ
,

and λr denotes the rate of observing a recombination event on any co-existing lineage and can be expressed as:

λr = ρ
∑
l∈Li

L(l).
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In order to allow for recombination rates to vary across s sections Ss of the genome, we modify λr to differ
in each section Ss, such that:

λr =
∑
s∈S

ρs
∑
l∈Li

L(l) ∩ Ss,

with L(l) ∩ Ss denoting denoting the amount of overlap between L(l) and Ss. The recombination rate in each263

section s is denoted as ρs.264

MCMC Algorithm for Recombination Networks265

In order to explore the posterior space of recombination networks, we implemented a series of MCMC operators.266

These operators often have analogs in operators used to explore different phylogenetic trees and are similar to267

the ones used to explore reassortment networks (Müller et al., 2020). Here, we briefly summarize each of these268

operators.269

Add/remove operator. The add/remove operator adds and removes recombination events. An extension270

of the subtree prune and regraft move for networks (Bordewich et al., 2017) to jointly operate on segment271

trees as well. We additionally implemented an adapted version to sample re-attachment under a coalescent272

distribution to increase acceptance probabilities.273

Loci diversion operator. The loci diversion operator randomly changes the location of recombination274

breakpoints on a recombination event.275

Exchange operator. The exchange operator changes the attachment of edges in the network while keeping276

the network length constant.277

Subnetwork slide operator. The subnetwork slide operator changes the height of nodes in the network278

while allowing to change the topology.279

Scale operator. The scale operator scales the heights of individual nodes or the whole network without280

changing the network topology.281

Gibbs operator. The Gibbs operator efficiently samples any part of the network that is older than the282

root of any segment of the alignment and is thus not informed by any genetic data.283

Empty loci preoperator. The empty segment preoperator augments the network with edges that do not284

carry any loci for the duration of a move, to allow larger jumps in network space.285

One of the issues when inferring these recombination networks is that the root height can be substantially286

larger than when not allowing for recombination events. This can cause computational issue when performing287

inferences. To circumvent this, we truncate the recombination networks by reducing the recombination rate some288

time after all positions of the sequence alignment have reached their common ancestor height. We validate the289

implementation of the coalescent with recombination network prior as well as all operators in the supplement S8.290

We also show that truncating the recombination networks does not affect the sampling of recombination networks291

prior to reaching the common common ancestor height of all positions in the sequence alignment.292

We then tested whether we are able to infer recombination networks, recombination rates, effective population293

sizes and evolutionary parameters from simulated data. To do so, we randomly simulated recombination networks294

under the coalescent with recombination. On top of these, we then simulated multiple sequence alignments.295

We then re-infer the parameters used to simulate using our MCMC approach. As shown in Figure S9, these296

parameters are retrieved well from simulated data with little bias and accurate coverage of simulated parameters297

by credible intervals.298

Additionally, we compared the effective sample size values from MCMC runs inferring recombination net-299

works for the MERS spike protein to treating the evolutionary histories as trees. We find that although the300

effective sample size values are lower when inferring recombination networks, they are not orders of magnitude301

lower (see fig S10).302
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Recombination network summary303

We implemented an algorithm to summarize distributions of recombination networks similar to the maximum304

clade credibility framework typically used to summarize trees in BEAST (Heled and Bouckaert, 2013). In short,305

the algorithm summarizes over individual trees at each position in the alignment. To do so, we first compute306

how often we encountered the same coalescent event at every position in the alignment during the MCMC. We307

then choose the network that maximizes the clade support over each position as the maximum clade credibility308

(MCC) network.309

The MCC networks are logged in the extended Newick format (Cardona et al., 2008) and can be visualized310

in icytree.org (Vaughan, 2017). We here plotted the MCC networks using an adapted version of baltic311

(https://github.com/evogytis/baltic).312

Software313

The Recombination package is implemented as an addon to the Bayesian phylogenetics software platform314

BEAST2 (Bouckaert et al., 2018). All MCMC analyses performed here, were run using adaptive paral-315

lel tempering (Müller and Bouckaert, 2020). The source code is available at https://github.com/nicfel/316

Recombination. We additionally provide a tutorial on how to setup and postprocess an analysis at https:317

//github.com/nicfel/Recombination-Tutorial. The MCC networks are plotted using an adapted ver-318

sion of baltic (https://github.com/evogytis/baltic). All other plots are done in R using ggplot2 (Wick-319

ham, 2016). The scripts to setup analyses and to plot the results in this manuscript are available from320

https://github.com/nicfel/Recombination-Material.321

Sequence data322

The genetic sequence data for OC43, NL63 and 229e were obtained from ViPR (http://www.viprbrc.org) as323

described in Kistler and Bedford (2021). All virus sequences were isolated from a human host. The sequence324

data for the MERS analyses were the same a described in Dudas et al. (2018), but using a randomly down325

sampled dataset of 100 sequences. For the SARS like analyses, we used several different deposited SARS-like326

genomes, mostly originating from bats, as well as humans and one pangolin derived sequence.327

Rates of adaptation328

The rates of adaptation were calculated using a modification of the McDonald-Kreitman method, as designed329

by Bhatt et al. (2011), and implemented in Kistler and Bedford (2021). Briefly, for each virus, we aligned the330

sequence of each gene or genomic region. Then, we the alignment into sliding 3-year slices, each containing a331

minimum of 3 sequenced isolates. We used the consensus sequence at the first time point as the outgroup. A332

comparison of the outgroup to the alignment of each subsequent temporal yielded a measure of synonymous333

and non-synonymous fixations and polymorphisms at each position in the alignment. We used proportional334

site-counting for these estimations (Bhatt et al., 2010). We assumed that selectively neutral sites are all silent335

mutations as well as replacement polymorphisms occurring at frequencies between 0.15 and 0.75 (Bhatt et al.,336

2011). We identified adaptive substitutions as non-synonymous fixations and high-frequency polymorphisms337

that exceed the neutral expectation. We then estimated the rate of adaptation (per codon per year) using linear338

regression of the number of adaptive substitutions inferred at each time point. In order to compute the 5’ of339

spike and 3’ of spike rates of adaptation we used the weighted average of all coding regions to the left (upstream)340

or right (downstream) of the spike gene, respectively, using the length of the individual sections as weights. We341

estimated the uncertainty by running the same analysis on 100 bootstrapped outgroups and alignments.342

11

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 28, 2021. ; https://doi.org/10.1101/2021.04.28.441806doi: bioRxiv preprint 

icytree.org
https://github.com/evogytis/baltic
https://github.com/nicfel/Recombination
https://github.com/nicfel/Recombination
https://github.com/nicfel/Recombination
https://github.com/nicfel/Recombination-Tutorial
https://github.com/nicfel/Recombination-Tutorial
https://github.com/nicfel/Recombination-Tutorial
https://github.com/evogytis/baltic
https://github.com/nicfel/Recombination-Material
https://doi.org/10.1101/2021.04.28.441806
http://creativecommons.org/licenses/by-nc/4.0/


Acknowledgments343

We would like to thanks Timothy G. Vaughan for helpful insights into the implementation of the software. NFM344

is funded by the Swiss National Science Foundation (P2EZP3 191891). KEK is a NSF GRFP Fellow (DGE-345

1762114) TB is a Pew Biomedical Scholar and is supported by NIH R35 GM119774. The Scientific Computing346

Infrastructure at Fred Hutch is supported by NIH ORIP S10OD028685347

12

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 28, 2021. ; https://doi.org/10.1101/2021.04.28.441806doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.28.441806
http://creativecommons.org/licenses/by-nc/4.0/


References348

Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., and Garry, R. F. (2020). The proximal origin of SARS-CoV-2. Nat Med, 26,349

450–452.350

Banner, L. R. and Mc Lai, M. (1991). Random nature of coronavirus rna recombination in the absence of selection pressure. Virology,351

185(1), 441–445.352

Barton, N. (1995). A general model for the evolution of recombination. Genetics Research, 65(2), 123–144.353

Bedford, T., Greninger, A. L., Roychoudhury, P., Starita, L. M., Famulare, M., Huang, M.-L., Nalla, A., Pepper, G., Reinhardt, A., Xie,354

H., et al. (2020). Cryptic transmission of sars-cov-2 in washington state. Science, 370(6516), 571–575.355

Bhatt, S., Katzourakis, A., and Pybus, O. G. (2010). Detecting natural selection in rna virus populations using sequence summary statistics.356

Infection, Genetics and Evolution, 10(3), 421–430.357

Bhatt, S., Holmes, E. C., and Pybus, O. G. (2011). The genomic rate of molecular adaptation of the human influenza a virus. Molecular358

biology and evolution, 28(9), 2443–2451.359

Bloomquist, E. W. and Suchard, M. A. (2010). Unifying vertical and nonvertical evolution: a stochastic arg-based framework. Systematic360

biology, 59(1), 27–41.361

Bobay, L.-M., O’Donnell, A. C., and Ochman, H. (2020). Recombination events are concentrated in the spike protein region of betacoron-362

aviruses. PLoS Genetics, 16(12), e1009272.363

Boni, M. F., Lemey, P., Jiang, X., Lam, T. T.-Y., Perry, B. W., Castoe, T. A., Rambaut, A., and Robertson, D. L. (2020). Evolutionary364

origins of the sars-cov-2 sarbecovirus lineage responsible for the covid-19 pandemic. Nature Microbiology, 5(11), 1408–1417.365

Bordewich, M., Linz, S., and Semple, C. (2017). Lost in space? generalising subtree prune and regraft to spaces of phylogenetic networks.366

Journal of theoretical biology, 423, 1–12.367

Bouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchene, S., Fourment, M., Gavryushkina, A., Heled, J., Jones, G., Kuhnert, D.,368

De Maio, N., et al. (2018). Beast 2.5: An advanced software platform for bayesian evolutionary analysis. BioRxiv, page 474296.369

Bouckaert, R. R. (2010). Densitree: making sense of sets of phylogenetic trees. Bioinformatics, 26(10), 1372–1373.370
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Figure S1: Recombination rate ratios of SARS-like viruses on different parts of the genome. Here,
we show the recombination rate ratios for SARS-like viruses based on two different analyses, one using the full
genome (left) and one using the spike protein only (right). The rate ratios denote the rate on a part of the
genome divided by the average rate on the two other parts of the genome. s1 over s2 denotes the rate ratio on
subunit 1 over subunit 2.
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Figure S2: Plot of the local trees of SARS-like virus on different positions across the genome. Here,
we show a densitree (Bouckaert, 2010) plot of local trees in the mcc network of SARS-like viruses. The local
trees are shown for every 100th position in the genome and are computed from the mcc network shown in
Fig. 1A. The different colors represent whether a local trees was towards the 5’ or 3’ end relative to the region
that codes for the spike protein, or whether it was on the spike protein itself.
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Figure S3: Common ancestor times between sequences of the SARS-CoV-2 clade, as well as SARS-
CoV-1. Estimate of common ancestor times of RmYN02 (A), RaTG13 B, P2S C and SARS-CoV-1 D with
each other and with SARS-CoV-2. The estimates of the common ancestor times assume an evolutionary rate
of 5 ∗ 10−4. Lower rates would push the common ancestor times further into the past, while higher rates would
bring the closer to the present.
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Figure S4: Number of observable recombination events and average length of genomic segment
coding for the same tree. A Number of recombination events that impact the genome of sampled viruses
in the dataset. B Average length of a segment in the genome of sampled viruses in the dataset that code
for the same phylogenetic tree. That is the average length of a part of the genome that is not broken up by
recombination events.

3e−06

1e−05

3e−05

1e−04

MERS 229E OC43 NL63

re
co

m
bi

na
tio

n 
ra

te
 p

re
 s

ite
 a

nd
 y

ea
r

Figure S5: Inferred recombination rates for the different coronaviruses. Here we show the posterior
distribution of recombination rates per year and per pair of adjacent nucleotides.
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Figure S6: Inferred evolutionary rates for the different coronaviruses. Here we show the posterior
distribution of evolutionary rates per year and nucleotide.
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Figure S7: Recombination rates of different parts of the recombination networks. Here, we compute
the recombination rates of different parts of the network based on how long lineages persist for into the future.
To do so, we classified each edge of the recombination network in the posterior distribution of the different
dataset into fit and unfit. Fit are edges that persist for at least 1, 2, 5 or 10 years into the future (plots from left
to right). We then compute the rates of recombination on these edges as well as on those who go extinct more
rapidly. We repeat the same for posterior predictive recombination networks that we simulated from the given
sampling times, the inferred effective population sizes and the inferred recombination rates under the coalescent
with recombination.
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Figure S8: Comparison of network statistics when simulating under the coalescent with recombi-
nation compared to sampling under the truncated coalescent with recombination. We here compare
the posterior distributions of network height, length and the number of recombination nodes when simulat-
ing recombination networks under th coalescent with recombination and when MCMC sampling under the
implementation of coalescent with recombination. We compare this for all the different MCMC operators imple-
mented. For MCMC operators which are not universal (cannot reach every point in the posterior distribution by
themselves), we tested the operator jointly with the Add/remove operator. The statistics ”above the root” take
into account the full distribution of networks. The statistics ”below the root” only take into account the parts
of the network that are below (more recent) than the oldest root of any individual position in the alignment.
These are the parts of the network that directly impact the likelihood.
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Figure S9: Inferred vs. true rates based on simulated data. Here, we simulated recombination networks
and sequence alignment using the randomly drawn values on the x-axis and then re-inferred these parameters
on the y-axis.

23

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 28, 2021. ; https://doi.org/10.1101/2021.04.28.441806doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.28.441806
http://creativecommons.org/licenses/by-nc/4.0/


●●●
●
●

●●
●●
●

●●

●●
●

●
●

●
●
●

●●●●●

●

●
●

●

●

●●●●●

●
●●●
●

height effective population size

posterior likelihood

network tree network tree

0
500

1000
1500
2000
2500

0
500

1000
1500
2000
2500

ef
fe

ct
iv

e 
sa

m
pl

e 
si

ze

Figure S10: Effective sample Sizes of MERS MCMC runs using the spike protein only. Here, we
compare ESS values after 25 Million MCMC iterations when inferring either networks or considering trees only
for 100 MERS spike sequences. The operator weights for the inference of recombination networks is the same
as used in the other coronaviruses in this manuscript. For the tree inferences, we used the default operator
weights. We computed the effective sample size values computed using coda (Plummer et al., 2006) for posterior
probabilities, network/tree likelihood values, network/tree root heights and effective population sizes.
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